更新時間:2019-12-25
力士樂電磁閥4WE10D33/OFCG24N9K4,REXROTH電磁閥;內外泄漏是危及安全的要素。其它自控閥通常將閥桿伸出,由電動、氣動、液動執行機構控制閥芯的轉動或移動。這都要解決長期動作閥桿動密封的外泄漏難題;唯有電磁閥是用電磁力作用于密封在電動調節閥隔磁套管內的鐵芯完成,不存在動密封,所以外漏易堵絕。
力士樂電磁閥4WE10D33/OFCG24N9K4,武漢百士自動化設備有限公司供應產品,原廠原裝,質量保障,歡迎新老客戶咨詢購買!
電磁閥主要特點
1、外漏堵絕,內漏易控,使用安全
內外泄漏是危及安全的要素。其它自控閥通常將閥桿伸出,由電動、氣動、液動執行機構控制閥芯的轉動或移動。這都要解決長期動作閥桿動密封的外泄漏難題;唯有電磁閥是用電磁力作用于密封在電動調節閥隔磁套管內的鐵芯完成,不存在動密封,所以外漏易堵絕。電動閥力矩控制不易,容易產生內漏,甚至拉斷閥桿頭部;電磁閥的結構型式容易控制內泄漏,直至降為零。所以,電磁閥使用特別安全,尤其適用于腐蝕性、有毒或高低溫的介質。
2、系統簡單,便接電腦,價格低謙
電磁閥本身結構簡單,價格也低,比起調節閥等其它種類執行器易于安裝維護。更顯著的是所組成的自控系統簡單得多,價格要低得多。由于電磁閥是開關信號控制,與工控計算機連接十分方便。在當今電腦普及,價格大幅下降的時代,電磁閥的優勢就更加明顯。
3、動作快遞,功率微小,外形輕巧
電磁閥響應時間可以短至幾個毫秒,即使是先導式電磁閥也可以控制在幾十毫秒內。由于自成回路,比之其它自控閥反應更靈敏。設計得當的電磁閥線圈功率消耗很低,屬節能產品;還可做到只需觸發動作,自動保持閥位,平時一點也不耗電。電磁閥外形尺寸小,既節省空間,又輕巧美觀。
4、調節精度受限,適用介質受限
電磁閥通常只有開關兩種狀態,閥芯只能處于兩個極限位置,不能連續調節,所以調節精度還受到一定限制。
電磁閥對介質潔凈度有較高要求,含顆粒狀的介質不能適用,如屬雜質須先濾去。另外,粘稠狀介質不能適用,而且,特定的產品適用的介質粘度范圍相對較窄。
5、型號多樣,用途多
電磁閥雖有先天不足,優點仍十分突出,所以就設計成多種多樣的產品,各種不同的需求,用途極為廣。電磁閥技術的進步也都是圍繞著如何克服先天不足,如何更好地發揮固有優勢而展開。
電磁換向閥的主要故障及損排除
(一)電磁鐵通電,閥芯不換向;或電磁鐵斷電,閥芯不復位;
1.檢查電磁鐵的電源電壓是否符合使用的要求,如電源電壓太低,則電磁鐵推力不足,不能推動閥芯正常換向。
2.閥芯卡住。如果電磁換向閥的各項性能指標都合格,而在使用中出現上述故障,主要檢查使用條件是否超過規定的指標。如工作的壓力,通過的流量,油溫以及油液的過濾精度等。再檢查復位彈簧是否折斷或卡住。對于板式連接的電磁換向閥,應檢查安裝底板表面的不平度,以及安裝螺釘是否擰得太緊,以至引起閥體變形。另外,閥芯磨削加工時的毛刺、飛邊, 被擠入徑向平衡槽中未清除干凈,在長期工作中,被油流沖出擠入徑向間隙中使閥芯卡住,這時應拆開仔細清洗。
3.電磁換向閥的軸線,必須按水平方向安裝。如垂直安裝,受閥芯、銜鐵等零件重量的影響,將造成換向或復位的不正常。
4.有泄油口的電磁換向閥,泄油口沒有接回油箱,或泄油管路背壓太高,造成閥芯“悶死”,不能正常工作。
(二)電磁鐵燒毀
1.電源電壓比電磁鐵規定的使用電壓高而引起線圈過熱。
2.推桿伸出長度過長,與電磁鐵的行程配合不當,電磁鐵銜鐵不能吸合,使電流過大,線圈過熱。當一個電磁鐵因其他原因燒毀后,使用者自行更換電磁鐵時更容易出現這種情況。由于電磁鐵的銜鐵與鐵芯的吸合面到與閥體安裝表面的距離誤差較大,與原來電磁鐵相配合的推桿的伸出長度就不一定能*適合更換后的電磁鐵。如更換后的電磁鐵的安裝距離比原來的短,則與閥裝配后,由于推桿過長,將有可能使銜鐵不能吸合,而產生噪聲,抖動甚至燒毀。如果更換的電磁鐵的安裝距離比原來的長,則與閥裝配后,由于推桿顯得短了,在工作時,閥芯的換向行程比規定的行程要小,閥的開口度也變小,使壓力損失增大,油液容易發熱,甚至影響執行機構的運動速度。因此,使用者自行更換電磁鐵時,必須認真測量推桿的伸出長度與電磁鐵的配合是否合適,絕不能隨意更換。
以上各項引起電磁鐵燒毀的原因主要出現于交流型的電磁鐵,直流電磁鐵一般不致于因故障而燒毀。
3.換向頻率過高,線圈過熱。
(三)干式型電磁閥換向閥推桿處外滲漏油:
1.一般電磁閥兩端的油腔是泄油腔或回油腔,應檢查該腔壓力是否過高。如果在系統中多個電磁閥的泄油或回油管道串接在一起造成背壓過高,則應將它們分別單獨接回油箱。
2.推桿處的動密封“O”形密封圈磨損過大,應更換。,
(四)板式連接電磁換向閥與底板的接合面處滲油:
1.安裝底板應磨削加工,光潔度達0.8,同時應有不平度誤差要求100: 0.01,并不得凸起。
2.安裝螺釘擰得太松。
3.螺釘材料不符合要求,強度不夠。目前,許多板式連接電磁換向閥的安裝螺釘均采用合金鋼螺釘。如果原螺釘斷裂或丟失,隨意更換一般碳鋼螺釘,會因受油壓作用引起拉伸變形,造成接合面的滲漏。
4.電磁換向閥底面“O”形密封圈老化變質,不起密封作用,應更換。
(五)濕式型電磁鐵吸合釋放過于遲緩:
電磁鐵后端有個密封螺釘,在初次安裝工作時,后腔存有空氣。當油液進入銜鐵腔內時,如后腔空氣釋放不掉,將受壓縮而形成阻尼,使動作遲緩。應在初次使用時,擰開密封螺釘,釋放空氣,當油液充滿后,再擰緊密封。
(六)長期使用后,執行機構出現運動速度變慢:
推桿因長期撞擊,磨損變短,或銜鐵與推桿接觸點磨損,使閥芯換向行程不足,引起油腔開口變小,通過流量減小。應更換推桿或電磁鐵。
(七)油流實際溝通方向不符合圖形符號標志的方向:
這是使用中很可能出現的問題。我國有關部門制訂頒發了液壓元件的圖表符號標準,但是,許多產品由于結構的特殊,實際通路情況與圖形符號的標準是不符合的,如圖34表示二位四通單電磁鐵彈簧復位型電磁換向閥的液壓圖形符號,滑閥機能為I1型(C型),電磁鐵符號畫在右邊,初始位置的通路形式為P→;B→0 (T) ;當電磁鐵通電吸合時為P→B; A→0 (T)。但實際上,這種結構形式的電磁換向閥按設計圖紙的繪制方法,電磁鐵是安裝在左邊的。通路型式因閥芯結構的不同也有二種; -種是如圖所示,另一種正好相反,即在初始位置是P→B溝通,A→0 (T)溝通,如圖35所示。
因此,在設計或安裝電磁閥的油路系統時,就不能單純按照標準的液壓圖形符號,而應該根據產品的實際通路情況來決定。如果已經造成差錯,那么,對于三位型閥可以采用調換電氣線路的辦法解決。對于二位閥,可以將電磁鐵及有關零件調頭安裝的方法解決,如仍無法更正時,只得調換管路位置,或者采用增加過渡通路板的方法彌補??傊覀儜撝溃瑯藴实囊簤簣D形符號,僅僅代表一種類型閥的代號,并不代表具體閥的結構。系統的設計和安裝應根據各生產廠提供的產品樣本進行。
這種情況對電液換向閥、液動換向閥、手動換向閥是*相似的。由于這類閥的口徑一般都比較大,管道較粗,一旦發生差錯,更改很困難,在設計安裝時是必須加以注意的。
電磁換向閥的進出油腔,只要都是高壓腔則是可以互換的,更換后的通路形式,則由具體更改的情況而定。但回油腔與高壓腔不能掉換。在有專門泄油腔結構的電磁閥中,如回油腔的回油背壓低于泄油腔的允許背壓,則回油腔可以串接一起接回油箱。否則均應單獨接回油箱。
力士樂電磁閥4WE10D33/OFCG24N9K4
4WE10Y33/CG24N9K4
3WE10A3X/CG24N9K4
3WE10A3X/AG24NZ5L
4WE10D3X/AG24NZ5l
4WE10D3X/AG24NZ5
4WE10Y3X/AG24NZ5L
4WE6J6X/EG24N9K4
4WE6G6X/AW220N9K4
4WE6M62/EG24NQK4
4WE6D62/EG24NGK4
4WE6D62/EG24N9K4
4WE6D61/EW110N9Z4
4WE6J6X/EG24N9K4/V
4WE6D61B/CG24N9Z5L
4WE10C33/CW230N9K4
4WE10E33/CG24N9K4
4WE6E62/EG24N9K4/B16
4WE10J33/CG24N9K4
4WE10D33/CG24N9K4
4WE6HA62/EG24N9K4
4WE6D62/EG24N9K4
4WE10J33/CG24N9K4
4WE6E61B/CG24N9KE+Z5L
4WE10J50/AG24NZ4
4WE10D35/CG24NZ4
4WE10EA3X/CG24N9K4
4WE10E3X/CG24N9K4
4WE10D33/OFCG24N9K4
4WE6D62/OFEG24N9K4
4WE10Y33/CG24N9K4
4WE10E3X/CW220-50NZ5L
4WE6D5X/OFAG24NZ5L
4WE10J3X/CG24N9K4
4WE10D3X/CG24N9K4
4WE6D6X/OFEG24NK4
4WE6D6X/OFEG24NK4
4WE6D6X/EG24NK4
4WE6D6X/EG24K4
3WE10A31/CW230N9K4
4WE6D6X/EW220N9K4
4WE6HB62/EG24N9K4
4WE10J3X/CG24N9K
4WE10HA3X/CG24N9K4
4WE10G3X/CG24N9K4
4WE10C3X/CG24N9K4
4WE6J6X/EG24N9K4
4WE6G6X/EG24N9K4
4WE10C20B/AG24
4WE10J33/CG24N9K4
4WE6D6X/EG24N9K4
4WE6Y6X/EW220N9K4
4WE6D62/EW230N9K4
4WE6Y6X/EG24N9K4
4WE10D33/CW230N9K4/V
電液比例多路閥負載傳感與壓力補償技術
節約能量、降低油溫和提高控制精度,同時也使同步動作幾個執行元件運動時互不干擾,現較*工程機械都采用了負載傳感與壓力補償技術。負載傳感與壓力補償是一一個很相似概念,都是利用負載變化引起壓力變化去調節泵或閥壓力與流量以適應系統工作需求。負載傳感對定量泵系統來講是將負載壓力負載感應油路引至遠程調壓溢流閥上,當負載較小時,溢流閥調定壓力也較小;負載較大,調定壓力也較大,但也始終存一定溢流損失。變量泵系統是將負載傳感油路引入到泵變量機構,使泵輸出壓力隨負載壓力升高而升高(始終為較小固定壓差),使泵輸出流量與系統實際需要流量相等,無溢流損失,實現了節能。壓力補償是提高閥控制性能而采取一種保證措施。將閥口后負載壓力引入壓力補償閥,壓力補償閥對閥口前壓力進行調整使閥口前后壓差為常值,這樣節流口流量調節特性流經閥口流量大小就只與該閥口開度有關,而不受負載壓力影響。